• Zetta
    link
    fedilink
    English
    arrow-up
    7
    arrow-down
    1
    ·
    8 hours ago

    You are being overzealous, the bubble ain’t gonna pop for a long while imo

    • unexposedhazard@discuss.tchncs.de
      link
      fedilink
      English
      arrow-up
      14
      ·
      edit-2
      8 hours ago

      Nah the funding is starting to dry up already. Big players including microsoft are cancelling plans. Ofcourse the scams keep going for a while but the peak is in the past.

      • Zetta
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        8 hours ago

        I don’t think the bubble will pop as long as “Ai” keeps advancing at the pace it is. LLMs, text to photo, and text to video models are getting exponentially better year over year. I really don’t think the hype train is going to slow down until the rate of progress slows as well, so far there aren’t an indications the rate of progress is going to slow.

        Wild guess here that I’m sure you and others will disagree with, even when the bubble “pops” it won’t really be a pop but more of a downturn that doesn’t actually hurt any of the big players significantly.

        Only time will tell, it will certain be interesting to watch as an outsider no-matter what.

        • sc_griffith@awful.systems
          link
          fedilink
          English
          arrow-up
          9
          ·
          edit-2
          3 hours ago

          LLMs, text to photo, and text to video models are getting exponentially better year over year.

          it is 2025 how are you still saying this shit

          picture of cat looking very tired

        • Alphane Moon@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          ·
          edit-2
          3 hours ago

          Has cloud LLM quality really improved exponentially in the past 12-18?

          I use a mix of local and cloud LLMs and to be honest my use cases are relatively simple, so it’s difficult for me to say.

          There is also the issue of running out of real training data.

          Not necessarily disagreeing with you (just look how long crypto has lasted and they’ve never been able to go beyond degenerate financial speculation and criminal activities).

        • unexposedhazard@discuss.tchncs.de
          link
          fedilink
          English
          arrow-up
          13
          ·
          7 hours ago

          This article is literally about the fact that progress has stagnated…

          There are clearly fundamental issues with the approach they have been using for LLMs. There is no new data left, the entire internet has been scraped already. All thats left is incremental improvements in the way they process the data.

          • Ledivin@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            arrow-down
            5
            ·
            edit-2
            5 hours ago

            This article is literally about the fact that progress has stagnated…

            OpenAI is stagnating, and has been for at least a few months, now. The AI industry as a whole has only continued to accelerate, especially with the new blood that is DeepSeek coming into play.

        • KitB@feddit.uk
          link
          fedilink
          English
          arrow-up
          10
          ·
          7 hours ago

          In my experience they’ve significantly tailed off over the past year, exponential growth would mean the amount they get better per unit time increases over time. What has gotten better is our ability to run the same level of things on cheaper hardware with less power, again just in my limited experience. (Also this is not the definition of exponential growth, just a property of it. Polynomial growth has the same property)