Also because if you are dealing with a double, then you’re probably dealing with multiple, or doing math that may produce a double. So returning a double just saves some effort.
Yeah it makes sense to me. You can always cast it if you want an int that bad. Hell just wrap the whole function with your own if it means that much to you
A double can represent numbers up to ± 1.79769313486231570x10^308, or roughly 18 with 307 zeroes behind it. You can’t fit that into a long, or even 128 bits. Even though rounding huge doubles is pointless, since only the first dozen digits or so are saved, using any kind of Integer would lead to inconsistencies, and thus potentially bugs.
How does that work? Is it just because double uses more bits? I’d imagine for the same number of bits, you can store more ints than doubles (assuming you want the ints to be exact values).
No, I get that. I’m sure the programming language design people know what they are doing. I just can’t grasp how a double (which has to use at least 1 bit to represent whether or not there is a fractional component) can possibly store more exact integer vales than an integer type of the same length (same number of bits).
It just seems to violate some law of information theory to my novice mind.
It doesn’t. A double is a 64 bit value while an integer is 32 bit. A long is a 64 bit signed integer which stores more exact integer numbers than a double.
Technically, a double stores most integers exactly ( up until a certain value ) and then approximations of integers of much larger sizes. A long stores all its integers exactly but cannot handle values nearly as large.
For most real world data ranges, they are both going to store integers exactly.
I don’t think that’s possible. Representing more exact ints means representing larger ints and vice versa. I’m ignoring signed vs. unsigned here as in theory both the double and int/long can be signed or unsigned.
Edit: ok, I take this back. I guess you can represent larger values as long as you are ok that they will be estimates. Ie, double of N (for some very large N) will equal double of N + 1.
I agree with all that. But I’m talking about exact integer values as mentioned in the parent.
I just think this has to be true:
count(exact integers that can be represented by a N bit floating point variable) < count(exact integers that can be represented by an N bit int type variable)
I’m going to guess here (cause I feel this community is for learning)…
Integers have exactness. Doubles have range.
So if MAX_INT + 1 is possible, then ~(MAX_INT + 1) is probably preferable to an overflow or silent MIN_INT.
But Math.ceil probably expects a float, because it is dealing with decimals (or similar). If it was an int, rounding wouldn’t be required.
So if Math.ceil returned and integer, then it could parse a float larger than INT_MAX, which would overflow an int (so error, or overflow). Or just return a float
I would need to look into the exact difference of double vs integer to know, but a partially educated guess is that they are referring to Int32 vs double and not Int64, aka long. I did a small search and saw that double uses 32 bits for the whole numbers and the others for the decimal.
Okay, so I dug in a bit deeper. Doubles are standardized as a 64 bit bundle that is divided into 1 signed bit, 11 exponetioal bits and 52 bits for decimal. It’s quite interesting. As to how it works indepth, I probably will try to analyze a bit conversion if I can try something
Makes sense, cause double can represent way bigger numbers than integers.
Also, double can and does in fact represent integers exactly.
Only to 2^54. The amount of integers representable by a long is more. But it can and does represent every int value correctly
*long long, if we’re gonna be taking about C types. A long is commonly limited to 32 bits.
C is irrelevant because this post is about Java and in Java long is 64 bits.
you should never be using these types in c anyway,
(u?)int(8/16/32/64)_t
are way more saneAlso because if you are dealing with a double, then you’re probably dealing with multiple, or doing math that may produce a double. So returning a double just saves some effort.
Yeah it makes sense to me. You can always cast it if you want an int that bad. Hell just wrap the whole function with your own if it means that much to you
(Not you, but like a hypothetical person)
deleted by creator
A double could also be NaN and any operations with NaN should return NaN afaik
doubles can hold numbers way larger than even 64-bit ints
A double can represent numbers up to ± 1.79769313486231570x10^308, or roughly 18 with 307 zeroes behind it. You can’t fit that into a long, or even 128 bits. Even though rounding huge doubles is pointless, since only the first dozen digits or so are saved, using any kind of Integer would lead to inconsistencies, and thus potentially bugs.
How does that work? Is it just because double uses more bits? I’d imagine for the same number of bits, you can store more ints than doubles (assuming you want the ints to be exact values).
No, it has an exponent component: https://en.m.wikipedia.org/wiki/Double-precision_floating-point_format
No, I get that. I’m sure the programming language design people know what they are doing. I just can’t grasp how a double (which has to use at least 1 bit to represent whether or not there is a fractional component) can possibly store more exact integer vales than an integer type of the same length (same number of bits).
It just seems to violate some law of information theory to my novice mind.
It doesn’t. A double is a 64 bit value while an integer is 32 bit. A long is a 64 bit signed integer which stores more exact integer numbers than a double.
Technically, a double stores most integers exactly ( up until a certain value ) and then approximations of integers of much larger sizes. A long stores all its integers exactly but cannot handle values nearly as large.
For most real world data ranges, they are both going to store integers exactly.
It doesn’t store more values bit for bit, but it can store larger values.
I don’t think that’s possible. Representing more exact ints means representing larger ints and vice versa. I’m ignoring signed vs. unsigned here as in theory both the double and int/long can be signed or unsigned.
Edit: ok, I take this back. I guess you can represent larger values as long as you are ok that they will be estimates. Ie, double of N (for some very large N) will equal double of N + 1.
deleted by creator
I agree with all that. But I’m talking about exact integer values as mentioned in the parent.
I just think this has to be true: count(exact integers that can be represented by a N bit floating point variable) < count(exact integers that can be represented by an N bit int type variable)
Oh now I get what you mean, and like others mentioned, yeah it’s more bits :)
I’m going to guess here (cause I feel this community is for learning)…
Integers have exactness. Doubles have range.
So if
MAX_INT + 1
is possible, then~(MAX_INT + 1)
is probably preferable to an overflow or silentMIN_INT
.But
Math.ceil
probably expects a float, because it is dealing with decimals (or similar). If it was an int, rounding wouldn’t be required.So if
Math.ceil
returned and integer, then it could parse a float larger than INT_MAX, which would overflow an int (so error, or overflow). Or just return a floatI would need to look into the exact difference of double vs integer to know, but a partially educated guess is that they are referring to Int32 vs double and not Int64, aka long. I did a small search and saw that double uses 32 bits for the whole numbers and the others for the decimal.
Yeah, that was my guess too. But that just means they could return a long (or whatever the 64 bit int equivalent in java is) instead of an int.
Okay, so I dug in a bit deeper. Doubles are standardized as a 64 bit bundle that is divided into 1 signed bit, 11 exponetioal bits and 52 bits for decimal. It’s quite interesting. As to how it works indepth, I probably will try to analyze a bit conversion if I can try something