I see I made a mistake by acknowledging your argument, and trying to indicate my understanding there of, before trying to get back to the point at hand that an infinite number of $1 bills is worth the same amount as an infinite number of $100 bills.
What is worth? Would you rather have 500 1s or 5 100s? You already said you’d take the 100s, why? I would take the 100s because I personally value the convenience of 100s more than the 1s, so to me, a single 100 is worth more than 100 1s. Worth doesn’t need to imply the monetary value of the money.
The convenience/utility makes the 100s worth more even if they’re both valued the same
Don’t care. They both get deposited at my bank the same.
You already said you’d take the 100s, why?
An acknowledgement to the point you were making that was a digression from the discussion at hand. My mistake apparently.
I would take the 100s because I personally value the convenience of 100s more than the 1s, so to me, a single 100 is worth more than 100 1s.
I personally would not accept a Genie wish for either as the mass would create a black hole that would destroy the universe. There is no “practical consideration” when dealing with infinities. Knowing how to work with infinities is useful for complex mathematics, but there is no real world application until you simplify away the infinities.
Worth doesn’t need to imply the monetary value of the money.
It very much does imply the monetary value of the money. It can mean other things if you want to define it as such, but you need to before hand in such a case. It was not defined differently by OP.
That’s a concession of the premise, you obviously can’t have infinite anything, but if you could then the 100s would bring more utility
But the utility is not the issue in the premise.
“Would you rather have an infinite number of $1 or $100 bills?” Obviously $100 bills, but they are worth the same amount.
If utility isn’t the reason why you’re picking 100s then why would you if they’re the same amount?
Utility is irrelevant to the statement “an infinite number of $1 bills is worth the same amount as an infinite number of $100 bills.”
Also you never said why you’d pick the 100s.
I see I made a mistake by acknowledging your argument, and trying to indicate my understanding there of, before trying to get back to the point at hand that an infinite number of $1 bills is worth the same amount as an infinite number of $100 bills.
I won’t make the same mistake again.
What is worth? Would you rather have 500 1s or 5 100s? You already said you’d take the 100s, why? I would take the 100s because I personally value the convenience of 100s more than the 1s, so to me, a single 100 is worth more than 100 1s. Worth doesn’t need to imply the monetary value of the money.
The convenience/utility makes the 100s worth more even if they’re both valued the same
Dollar value.
Don’t care. They both get deposited at my bank the same.
An acknowledgement to the point you were making that was a digression from the discussion at hand. My mistake apparently.
I personally would not accept a Genie wish for either as the mass would create a black hole that would destroy the universe. There is no “practical consideration” when dealing with infinities. Knowing how to work with infinities is useful for complex mathematics, but there is no real world application until you simplify away the infinities.
It very much does imply the monetary value of the money. It can mean other things if you want to define it as such, but you need to before hand in such a case. It was not defined differently by OP.