MIT engineers and collaborators developed a solar-powered device that avoids the salt-clogging issues of other designs. Engineers at MIT and in China are aiming to turn seawater into drinking water with a completely passive device that is inspired by the ocean, and powered by the sun. In a pap
Is there a compelling and obvious reason we can’t dilute brine back into the water we let outflow from our waste systems into the oceans rather than dumping it all at once? or maybe dribble flow at river deltas or so?
Large scale desalination produces a lot of brine. There’s no way to release it in small amounts because it isn’t produced in small amounts.
You could but estuaries are incredibly important ecosystems and increased salinity might be harmful to them. Arguably the best place is oceanic areas with strong currents to promote brine mixing with normal seawater. The worst impacts are where the brine sinks and does not mix, creating a dead zone on the sea floor.
The best place is into the desert to make salt like they do in Africa.
Maybe. Anti-biofouling chemicals used by most systems are extremely toxic. If a system avoids using those somehow then this can work.
Does this system use those tho. I thought this was a chem free sunstill
It might be. But I don’t consider this to be a real system until it’s been scaled up and has the cost established. Biofouling isn’t likely to become much of an issue until the system is in use for a time. But since it has no filters it might not need it, I’m not sure.
yes they do that in some facilities, it’s called sewer discharge and can be quiet effective in a well monitored and designed system, surface water discharge uses a similar method of dribbling brine into the water as part of a system that uses ocean currents and tides to disperse the brine back into the ocean.
While brine return is a complicated and important step it’s really not some major ecosystem destroying problem in any of the modern installs - it’s just important to model and monitor the system, the same way sewage systems find a location where currents carry stuff away and allow it to disperse brine return systems do, with brine it’s just stuff that belongs in the ocean anyway so it all mixes back in fairly quickly.
A lot of people seem to like to learn the difficulties involved in a new tech and then just use negative thinking to exaggerate it into a reason the tech will never be useful even after decades of improvement and investment. There are huge projects around the world which have done really positive things for local ecosystems, they’re even refilling the sea of galilee after decades of over extraction and allowing groundwater levels to restore.
The brine from this system is not very concentrated
Sounds good to me
I mean, if there is a reason I really want to know it. That we aren’t doing so suggests there’s some reason, although there’s a decent chance that answer is, “That would cost anything more than dumping it out the nearest window.”
When I first read about this I thought, why not outflow into a tiered salt mine and let evaporation do its thing