• hikaru755@lemmy.world
      link
      fedilink
      English
      arrow-up
      7
      ·
      1 year ago

      You can pass two 2d ovals through each other in a 3D space no problem if they’re exactly the same size.

      • lolcatnip@reddthat.com
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        edit-2
        1 year ago

        Yes, but can you maintain the property that each point on the orange portal is connected to a point on the blue portal and vice versa? My intuition is that you’d end up with a paradox because you’d end up with a point on one portal connected to two different points on the other, but my analytic geometry skills aren’t good enough for me to attempt a proof.

        • hikaru755@lemmy.world
          link
          fedilink
          English
          arrow-up
          3
          ·
          1 year ago

          Not sure I’m following. If the portals are exactly the same size, and stay that size, then why would you have to connect one point on one to two points on the other?

        • Spzi@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 year ago

          Consider these two pixel-oval portals:

            xx         oo
          x    x     o    o
          x    x     o    o
          x    x     o    o
          x    x     o    o
            xx         oo
          

          They are the same size, and you can easily make a bijective mapping for each of their pixels.

          Rotate one two times in 3D space by 90°, and it fits through the other. If you want more wiggle room, make them taller.